
Fernando Hechavarría Fajardo, Heba Aamer, and Bas Ketsman

Optimizing Stratified Datalog with Count

 1

22 November 2024

Vrije Universiteit Brussel, Belgium

Distributed Systems

2Optimizing Stratified Datalog with Count

Distributed Datalog Programs

3Optimizing Stratified Datalog with Count

Find all students (S) taking (T) all courses (C).

S

Answer(x) ← S(x), ¬M(x) .T

C

M(x) ← S(x), C(y), ¬T(x, y) .

4Optimizing Stratified Datalog with Count

S

T

C

{S(1), S(2), S(3)}

{T(1,1), T(1,2),
T(2,1),

T(3,1), T(3,2)}

{C(1), C(2)}

Distributed Datalog Programs

Answer(x) ← S(x), ¬M(x) .M(x) ← S(x), C(y), ¬T(x, y) .

{S(2)}

5Optimizing Stratified Datalog with Count

S

T

C

{S(1), S(2), S(3)}

{T(1,1), T(1,2),
T(2,1),

T(3,1), T(3,2)}

{C(1), C(2)}

{Answer(2)}

Distributed Datalog Programs

Answer(x) ← S(x), ¬M(x) .M(x) ← S(x), C(y), ¬T(x, y) .

{S(2)}

6Optimizing Stratified Datalog with Count

S

T

C

{S(1), S(2), S(3)}

{T(1,1), T(1,2),
T(2,1),

T(3,1), T(3,2)}

{C(1), C(2)} {Answer(1),
Answer(3)}

⏳⏳

Distributed Datalog Programs

{M(2)}

Answer(x) ← S(x), ¬M(x) .M(x) ← S(x), C(y), ¬T(x, y) .

7Optimizing Stratified Datalog with Count

S

Answer(x) ← S(x), ¬M(x) .M(x) ← S(x), C(y), ¬T(x, y) . ⏳T

C

⏳

 M(x) ← S(x), C(y), ¬T(x, y) .
Answer(x) ← S(x), ¬M(x) .

Synchronization Strata≈

Goal

8Optimizing Stratified Datalog with Count

How can we reduce synchronization overhead?

Positive Programs

9Optimizing Stratified Datalog with Count

• Positive Datalog programs are confluent.

• Positive Datalog programs can only express monotone queries.

Confluence is undecidable for Datalog programs with negation.

Negation Incremental Count→

10Optimizing Stratified Datalog with Count

M(x) ← S(x), C(y), ¬T(x, y) . T#(x; count⟨⟩) ← C(y), T(x, y) .

Answer(x) ← S(x), ¬M(x) . M(x) ← S(x), C(y), T#(x; c), c ≤ 0.

M#(x; count⟨⟩) ← M(x) .

Answer(x) ← S(x), M#(x; c), c ≤ 0.

11Optimizing Stratified Datalog with Count

• The rewriting does not lead directly to a program with a reduced number
of synchronization steps.

• Even Positive Datalog programs with count are not always confluent.

Replacing Negation by Count

Fewer synchronization steps

12Optimizing Stratified Datalog with Count

S

T

C

SC(count⟨y⟩) ← C(y) .

⏳

Answer(x) ← S(x), SC(c),
CT(x; d), c ≤ d .

SC(count⟨y⟩) ← C(y) .

CT(x; count⟨y⟩) ← C(y), T(x, y) .
Answer(x) ← S(x), SC(c), CT(x; d), c ≤ d .

CT(x; count⟨y⟩) ← C(y), T(x, y) .

M(x) ← S(x), C(y), ¬T(x, y) .

Local Optimization through Counting

13Optimizing Stratified Datalog with Count

Answer(x) ← S(x), ¬M(x) .

SC(count⟨y⟩) ← C(y) .

CT(x; count⟨y⟩) ← C(y), T(x, y) .
Answer(x) ← S(x), SC(c), CT(x; d), c ≤ d .

Local Optimization through Counting

14Optimizing Stratified Datalog with Count

• Broader identification of confluent
programs.

• Use of database-dependent
constants to optimize further.

• Experimental validation to prove
whether the rewriting technique
improves performance in practice.

Results
We provide a rewriting technique
that can reduce the required
synchronization up to half.

15Optimizing Stratified Datalog with Count

Future Work

Confluent

≡Datalogmc Datalog
⊆

⊆

Monotone

