Computing Range Consistent Answers to Aggregation Queries via Rewriting $^{\rm 1}$

Aziz Amezian El Khalfioui and Jef Wijsen

University of Mons, Belgium

November 22, 2024

¹This paper will also be presented at PODS 2025 [AEKW24].

Aziz Amezian El Khalfioui and Jef Wijsen

November 22, 2024 1

Table of Contents

Numerical queries

- 2 Inconsistent Databases
- 3 Range Consistent Answers

4 Main Result

We consider numerical queries that take the following form

```
AGG(r) \leftarrow q(\vec{u})
```

where

- AGG is an aggregate symbol (like MAX, MIN, SUM, AVG, COUNT);
- $q(\vec{u})$ is a self-join-free conjunction of atoms with variables \vec{u} ; and
- r is either a numeric variable occurring in \vec{u} or a constant rational number.

Definition

Let **db** be a database instance. An embedding of $q(\vec{u})$ in **db** is a total mapping θ from \vec{u} to the set of constants appearing in **db** such that $\theta(q) \subseteq \mathbf{db}$.

Example

Consider the conjunction $Dealers(\underline{x}, y) \wedge Stock(\underline{z}, y, r)$, and the following database instance **db**:

Dealers	<u>Name</u>	Town
		Boston
	Smith	New York

We have 3 different embeddings in **db**:

- one for Tesla X sold in Boston;
- one for Tesla Y sold in Boston; and
- one for Tesla Y sold in New York.

Stock	<u>Product</u>	Town	Qty
	Tesla X	Boston	35
	Tesla Y	Boston	35
	Tesla Y	New York	90
db:			
and			
rle			

Example

Consider the numerical query

$$g() = ext{SUM}(r) \leftarrow \textit{Dealers}(\underline{x}, y) \land \textit{Stock}(z, y, r)$$

and the following database instance **db**:

Dealers	Name	Town	Stock	<u>Product</u>	<u>Town</u>	Qty
Dealers		Boston		Tesla X	Boston	35
				Tesla Y	Boston	35
	Smith New York		Tesla Y	New York	90	

g() returns the sum over the multiset containing θ(r) for each embedding θ in db.

• In this example, g() returns $SUM(\{\{35, 35, 90\}\}) = 160$.

1 Numerical queries

Inconsistent Databases

3 Range Consistent Answers

4 Main Result

Primary Key Violations

We consider database instances that may violate primary key constraints.

Example

Consider the following database instance:

Dealers	Name	Town	Stock	<u>Product</u>	Town	Qty
Dealers				Tesla X	Boston	35
		Boston New York		Tesla Y	Boston	35
	Smith			Tesla Y	New York	90

The primary key $Name \rightarrow Town$ is violated.

Definition

Let \mathbf{db} be a database instance. A repair is an inclusion-maximal subset that satisfies all primary keys.

Example

Consider the following database instance:

Dealers	Name	Town	Stock	<u>Product</u>	Town	Qty
Dealers				Tesla X	Boston	35
		th Boston th New York		Tesla Y	Boston	35
	Smith			Tesla Y	New York	90

We have two repairs:

- one where the dealer Smith works in Boston; and
- one where the dealer Smith works in New York.

1 Numerical queries

- 2 Inconsistent Databases
- 3 Range Consistent Answers

4 Main Result

Range Consistent Answers

We employ the range semantics as presented by Arenas et al. [ABC01], which provides the greatest lower bound (glb) and the least upper bound (lub) of query answers across all repairs.

Example

Consider the numerical query $SUM(r) \leftarrow Dealers(\underline{x}, y) \land Stock(\underline{z}, y, r)$ and the following database instance:

Dealers	Name	Town	Stock	<u>Product</u>	Town	Qty
Dealers		Boston		Tesla X	Boston	35
		Smith New York		Tesla Y	Boston	35
				Tesla Y	New York	90

- The numerical query returns SUM($\{\{35, 35\}\}$) = 70 on one repair, and SUM($\{\{90\}\}$) = 90 on the other repair.
- Thus, the glb is 70, the lub is 90, and the range consistent answer is [70, 90].

10/17

Definition

Let g() be a numerical query. The function problems GLB-CQA(g()) and LUB-CQA(g()) take a database instance **db** as input, and return, respectively, the glb and the lub of the set that contains each number returned by g() on some repair.

In this work, we focus on GLB-CQA(g()).

1 Numerical queries

- 2 Inconsistent Databases
- 3 Range Consistent Answers

Definition

An aggregate operator is associative if for all non-empty multisets X and Y such that $X \neq \emptyset$, we have $\mathcal{F}(X \uplus Y) = \mathcal{F}(\{\{\mathcal{F}(X)\}\} \uplus Y)$, where \uplus denotes union of multisets.

Definition

An aggregate operator \mathcal{F} is monotone if for all m > 0 and every (possibly empty) multiset Y, we have $\mathcal{F}(\{\{x_1, \ldots, x_m\}\}) \leq \mathcal{F}(\{\{x'_1, \ldots, x'_m\}\} \uplus Y)$ whenever $x_i \leq x'_i$ for every i.

Example

MAX and SUM (over non-negative values) are monotone and associative. MIN is associative but not monotone since $MIN(\{\{2,3\}\}) \leq MIN(\{\{2,3,1\}\})$. The logic AGGR[FOL] extends FOL with aggregation operators.

Theorem

The following decision problem is decidable in quadratic time (in the size of the input):

Given a numerical query $g() := AGG(r) \leftarrow q(\vec{u})$ such that the aggregate operator AGG is monotone and associative, is GLB-CQA(g()) expressible in AGGR[FOL]?

Moreover, if the answer is "yes," it is possible to effectively construct, also in quadratic time, a formula in AGGR[FOL] that solves GLB-CQA(g()).

- Extend our results to aggregate operators that lack monotonicity, associativity, or both.
- Shift from expressibility in AGGR[FOL] to computability in P.

Thanks!

Marcelo Arenas, Leopoldo E. Bertossi, and Jan Chomicki.

Scalar aggregation in fd-inconsistent databases.

In ICDT, volume 1973 of Lecture Notes in Computer Science, pages 39-53. Springer, 2001.

Aziz Amezian El Khalfioui and Jef Wijsen.

Computing range consistent answers to aggregation queries via rewriting. *Proc. ACM Manag. Data*, 2(5), November 2024.