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Cool use cases
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● Information Retrieval
● Recommendation Systems
● In the LLMs era: Retrieval Augmented Generation (RAG) 



Vector similarity search is expensive



Vector similarity search is expensive

…unless we trade-off exactness



Vector indexes to speed up search

[2010] Jegou, Herve, Matthijs Douze, and Cordelia Schmid. "Product quantization for nearest neighbor search." 



Vector indexes to speed up search

[2018] Malkov, Yu A., and Dmitry A. Yashunin. "Efficient and robust approximate nearest neighbor search using hierarchical navigable small 
world graphs." 



Quantization to speed up search
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● Facing similar challenges of Analytical Databases 
○ Heavy-weight indexes that are hard to maintain (HNSW)
○ How to efficiently pushdown predicates (hybrid search)

[2024] Patel, L., et al. ACORN: Performant and Predicate-Agnostic Search Over Vector Embeddings and Structured Data.

Challenges of Vector Similarity Search
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● Facing similar challenges of Analytical Databases 
○ Heavy-weight indexes that are hard to maintain (HNSW)
○ How to efficiently pushdown predicates (hybrid search)
○ Most quantization techniques lack locality adaption

[2024] Aguerrebere, C., et al. Locally-Adaptive Quantization for Streaming Vector Search. https://github.com/intel/ScalableVectorSearch
[2023] Aguerrebere, C., et al. Similarity search in the blink of an eye with compressed indices. 

Challenges of Vector Similarity Search

https://github.com/intel/ScalableVectorSearch
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● Facing similar challenges of Analytical Databases 
○ Heavy-weight indexes that are hard to maintain (HNSW)
○ How to efficiently pushdown predicates (hybrid search)
○ Most quantization techniques lack locality adaption

● Search runtime dominated by distance calculations
Recent research proposes 
pruning of dimensions on 
the distance calculation

However, they can still 
lose to full SIMD distance 
calculations

[2023] Gao, J., & Long, C. High-dimensional ANNS: with reliable and efficient distance comparison operations. 
[2024] Yang, M., et al. Bridging Speed and Accuracy to Approximate k-Nearest Neighbor Search. 

[2002] de Vries, Arjen P., et al. Efficient k-NN search on vertically decomposed data.

Challenges of Vector Similarity Search
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● Facing similar challenges of Analytical Databases 
○ Heavy-weight indexes that are hard to maintain (HNSW)
○ How to efficiently pushdown predicates (hybrid search)
○ Most quantization techniques lack locality adaption

● Search runtime dominated by distance calculations

Can we borrow ideas 
from Analytical Databases?

Challenges of Vector Similarity Search



Storage 
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● Better opportunities for compression 
● Efficient scans of attributes
● Vectorized query execution

What if we store vectors 
in a Vertical Layout?



Storage 
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● PDX: Vertical Layout for Vectors



Storage 
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● PDX: Vertical Layout for Vectors

[2025] Kuffo, L., Krippner E., & Boncz, P. PDX: A Data Layout for Vector Similarity Search (under-review)

[2002] de Vries, Arjen P., et al. Efficient k-NN search on vertically decomposed data.



Storage: A foundational change 
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● PDX: Vertical Layout for Vectors
● Allows for efficient dimensions-pruning during search



A search that (reliably) prunes dimensions 
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Pruning threshold

A search that (reliably) prunes dimensions 



36

Pruning threshold

A search that (reliably) prunes dimensions 



37

Pruning threshold

A search that (reliably) prunes dimensions 



A search that (reliably) prunes vectors 
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Tighter Pruning threshold

[2025] Kuffo, L., Krippner E., & Boncz, P. PDX: A Data Layout for Vector Similarity Search (under-review)



A search that (reliably) prunes vectors 
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Tighter Pruning threshold

[2025] Kuffo, L., Krippner E., & Boncz, P. PDX: A Data Layout for Vector Similarity Search (under-review)

PDXearch



Storage: A foundational change 
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● PDX: Vertical Layout for Vectors
● Allows for efficient dimensions-pruning during search ✔



Storage: A foundational change 
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● PDX: Vertical Layout for Vectors
● Allows for efficient dimensions-pruning during search ✔

● Distance computation (L2) faster than SIMD kernels
○ Only using Scalar code that is auto-vectorized (in NEON, AVX2 and AVX512)



A search that (reliably) prunes vectors → on IVF
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A search that (reliably) prunes vectors
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● PDX: Vertical Layout for Vectors
● Allows for efficient dimensions-pruning during search ✔ 
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Storage: A foundational change 
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● PDX: Vertical Layout for Vectors
● Allows for efficient dimensions-pruning during search ✔ 
● Distance computation (L2) faster than SIMD kernels ✔ 
● Lightweight Compression



LEP: Lossily Encoded floating-Points (WIP)
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● Local adaptivity per dimension & per block  
○ Specially effective on space-partitioning indexes (IVF)
○ Thanks to the PDX layout

● ALP without lossless verification (in a nutshell) 
● Encoding of out-of-distribution values
● Encoding of repetition 

[2025] Krippner, E. Rethinking Vector Embeddings Search for Analytical Database Systems. (MSc thesis)

[2023] Afroozeh, Azim, Leonardo X. Kuffo, and Peter Boncz. "ALP: Adaptive Lossless floating-Point Compression." 



LEP: Lossily Encoded floating-Points (WIP)
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[2025] Krippner, E. Rethinking Vector Embeddings Search for Analytical Database Systems. (MSc thesis)
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Summary
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PDX | A Vertical Layout for Vectors

● Distance calculations faster than SIMD kernels ✔ 
● Improve distance evaluation latency by pruning dimensions ✔ 
● Adaptive lightweight compression per dimension (wip) ✔



Future Work
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● Better pruning strategies
● Implement PDXearch on GPUs
● Do IVF indexes the right way

○ Lightweight | Updatable | Compressed | Pruning



Leonardo Kuffo*, Peter Boncz
CWI Database Architectures group
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A search that (reliably) prunes vectors → on IVF
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A search that (reliably) prunes vectors → on IVF
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A search that (reliably) prunes vectors → on IVF
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A search that (reliably) prunes vectors 
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● Find benefits only with the PDX layout
● Pruning Algorithms:

○ ADSampling → Approximate (<0.001 loss of recall)
○ BSA → Approximate
○ PDX-BOND → Exact | Prioritize dimensions at query-time

● ↑ gains at ↑ dimensionalities

[2025] Kuffo, L., Krippner E., & Boncz, P. PDX: A Data Layout for Vector Similarity Search (under-review)

[2023] Gao, J., & Long, C. High-dimensional ANNS: with reliable and efficient distance comparison operations. 
[2024] Yang, M., et al. Bridging Speed and Accuracy to Approximate k-Nearest Neighbor Search. 

● Which distance metrics?
○ Monotonic ones (L2, Dot in normalized vectors [0, 1])

● How early does pruning happen?
○ As early as 2% of dimensions in some datasets
○ Depends on the query, dataset and pruning algorithm



A search that (reliably) prunes vectors → on Exact
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A search that (reliably) prunes vectors → vs HNSW (wip) 
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• K = 10
• HNSW efConstruction = 64
• HNSW M = 24
• IVF N° Probed = 256
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A search that (reliably) prunes vectors → vs HNSW (wip) 

58

Q
P

S 
(K

=1
0)

 |
 M

1



Lightweight Compression: ALP (lossless)
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Lightweight Compression: ALP (lossless)
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Across Architectures
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