Meta-Property Graphs: Extending Property Graphs with Metadata Awareness and Reification

DBDBD 2024

Sepehr Sadoughi, Nikolay Yakovets, George Fletcher

Mathematics and Computer Science, Database group

Motivation (problem definition)

- Graph databases are emerging. And now we have the GQL ISO standard.
- Need for support **Heterogeneity** between data and meta-data in Modern data engineering applications
 - e.g.: (1) when **integrating** data sources for building a **knowledge graph**, one source data value may correspond to another source label or attribute key. (2) **Auditing** an existing KG it might require an **aggregation** of different data objects for annotation.

Motivation (problem definition)

PG – GQL ISO standard

Pros	Cons
Schema-flexible	Strict distinction between metadata and data
Support properties and labels over both nodes and edges	No support for reification

Contribution 1: Meta-Property Graph Model

- Treat properties and label sets as **first-class citizen** and data objects.
- Enabling **promotion and demotion** of Meta-data (i.e. property keys and label sets) to data.
- Extending property graph data model to support **reification** as the second form of metadata.

Contribution 2: MetaGPML

- A **backward compatible** extension of GPML query language to support the Meta-property Graph features.

Meta-Property Graph Model

Fig 1: MPG example scenario

Meta-GPML to go

Nodes			Edges					
					Properties			erties
(x:1)	Node x with label l in it's label set		-[x]->	Edge x		{ x }	Prop	perty x
					KEY(x)	Key	of property x	
(x:?y)	(x:?y) Node x with label set y -[x:1]-> Edge x with label I		VAL(x)	Value of property x				
	Node x with label set y		Edge x with label					
(x:?y::n)	and reified pattern $\boldsymbol{\pi}$		-[x:?y]->	set y		Labels		
	Node x with label set y			Edge x with label		x		Label x
(x:?y::π).z	and reified pattern π and property z		-[x:?y].z-> se z	set y and property z		c ELEMENTOF x		Check if c exist in label x
(x:l::π).z	Node x with label I and reified pattern π and property z		-[x:1].z->	Edge x with label I and property z				

Fig 1: MPG example scenario

Q1: Which label sets contain the label Publication?

MATCH |1|
WHERE "Publication" ELEMENTOF 1
RETURN 1 AS "Publication_Co_Tags"

Publication_Co_Tags

{"Publication", "Journal"} {"Publication", "conference"} Q2: What are the values of Name properties?

<pre>MATCH {p} WHERE KEY(p) = "Name" RETURN VAL(p) AS "Names"</pre>			
	Names Lee Scopus Rose PubMed		

Fig 1: MPG example scenario

Q3: Which relationships does each Publication have with each Indexing DB?

MATCH (x:Publication)-[:?y]->(z:Indexing_DB)
RETURN x.Title AS "Title", y AS z.Name

```
{ (Title \rightarrow "Nature Studies", Scopus \rightarrow "Archived"),
(Title \rightarrow "Nature Studies", PubMed \rightarrow "Indexed"),
(Title \rightarrow "Biology Advancements", PubMed \rightarrow "Indexed")}
```

Q4: Who assigned Lee as a reviewer and when?

```
MATCH (x:Person)-[:assigns]->
(y::(z:Person)-[:reviews]->())
WHERE z.Name = "Lee"
RETURN z.Name AS "reviewer name",
y.Date AS "Date",
x.Name AS "Assigning editor"
```

Reviewer name	Date	Assigning editor		
Lee	05-11-2024	Rose		

Next steps towards the MPG vision

Open research challenges:

_

- Thank you! Physical representations and indexing strategies for MPGs
- Query evaluation and optimization solutions for the novel capabilities of -MetaGPML
- Extending the GQL and SQL/PGQ languages with MetaGPML -
- Schema and constraint languages for MPG, building upon the PG-Schema _ framework
- Educational and training resources for students and professionals in working with MPGs and MetaGPML

Sepehr Sadoughi – PhD candidate s.sadoughi@tue.nl