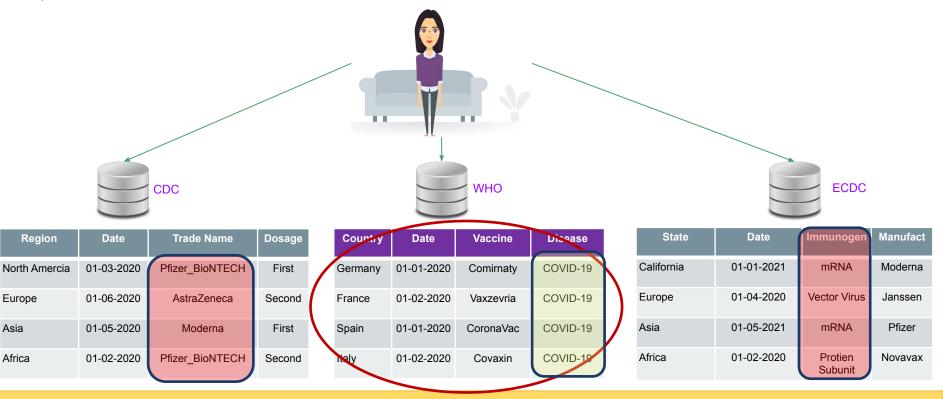


Dataset Discovery using Semantic Matching

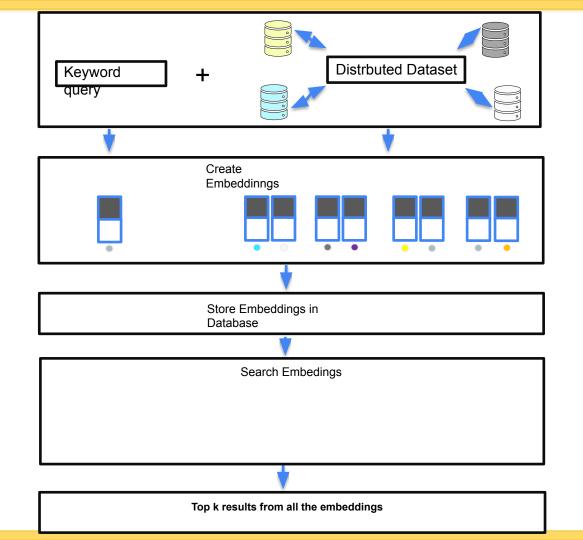
Enas Khwaileh

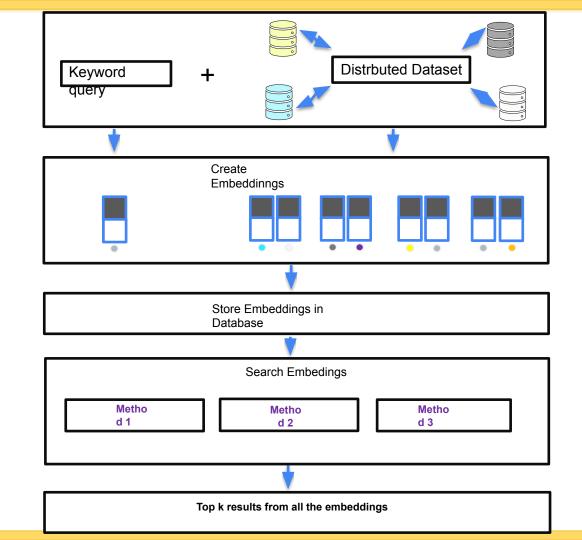

Yannis Velegrakis

DBDBD November 22, 2024

Task: Analyzing COVID-19 vaccine data to assess effectiveness and potential side effects.

Keyword: "Covid-19 vaccine".

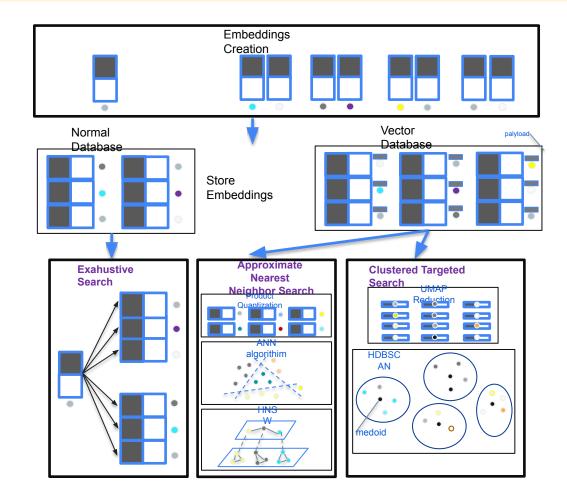



Problem statement

Assume we have a query **Q** and a datasets D we want to find the *match* function:

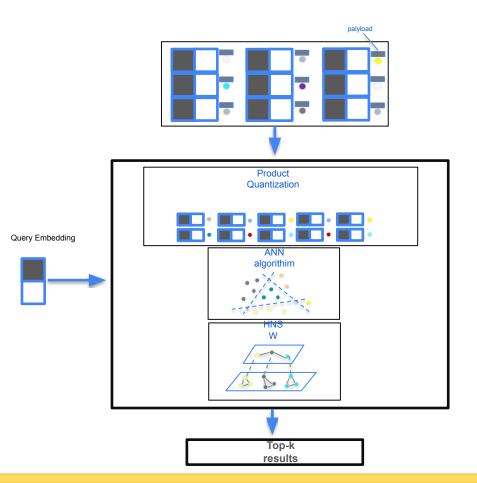
match: $\mathcal{D} \times Q \rightarrow R$

 \mathcal{D} : set of dataset Q: set of queries

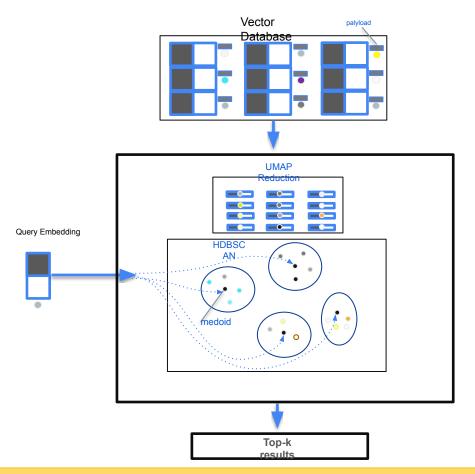


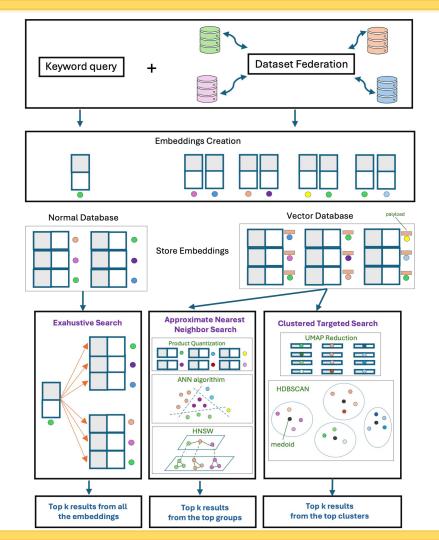
Our Solution: Semantic Matching Techniques

- 1. Exhaustive Search (ExS).
- 2. Approximate Nearest Neighbors Search (ANNS).
- 3. Clustered Targeted Search (CTS).



Exahustive Search (ExS)


Query Embedding Top-k results from all the embeddings


Normal Database

Approximate Nearest Neghbiors Search (ANNS)

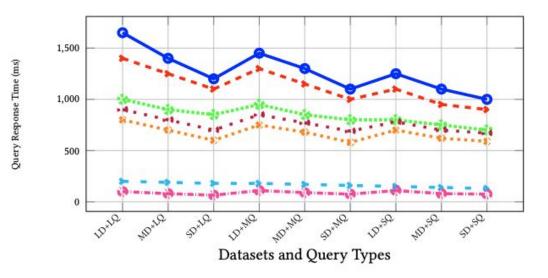
Clustrered Targeted Search (CTS)

Experimental Setup

- Large Dataset (LD): 100%.
- Moderate Dataset (MD): 50%.
- Small Dataset (SD): 10% of the original dataset.

- Long Queries (LQ): Containing over 30 keywords, but not more 300 words.
- Moderate Queries (MQ): Up to 30 keywords.
- Short Queries (SQ): Not more than three keywords.

Metrics: Accuracy: MAP, MRR, NDCG. Scalability: retrieving time millisecond/per query



Performance Evaluation (Quality)

- CTS achieves MAP, MRR, and NDCG across all query types.
- ANNS offers competitive speed and reasonable accuracy.
- ExS has high accuracy but low efficiency.

Performance Evaluation (Scalability)

Performance Evaluation (Scalability) millisecond

Dataset	Query	CTS	ANNS	
100%	Long	75	100	
	Moderate	85	90	
	Short	110	150	
50%	Long	70	75	
	Moderate	80	120	
	Short	80	130	
10%	Long	65	95	
	Moderate	75	100	
	Short	75	115	

Table 1: Quality of long query results

Dataset	Method	МАР	MRR	NDCG			
				5	10	15	20
LD	CTS	0.705	0.680	0.720	0.700	0.685	0.668
	ANNS	0.685	0.670	0.700	0.675	0.660	0.642
	ExS	0.670	0.655	0.690	0.670	0.650	0.63
	MDR	0.655	0.640	0.675	0.655	0.640	0.625
	ws	0.640	0.625	0.665	0.645	0.630	0.61
	TCS	0.635	0.620	0.660	0.640	0.625	0.61
	AdH	0.620	0.605	0.650	0.630	0.615	0.600
MD	CTS	0.720	0.700	0.735	0.710	0.695	0.675
	ANNS	0.705	0.690	0.720	0.700	0.680	0.66
	ExS	0.690	0.675	0.710	0.690	0.670	0.65
	MDR	0.675	0.660	0.700	0.680	0.660	0.64
	ws	0.660	0.645	0.690	0.670	0.650	0.63
	TCS	0.655	0.640	0.680	0.660	0.640	0.62
	AdH	0.640	0.625	0.675	0.655	0.635	0.620
SD	CTS	0.735	0.715	0.750	0.725	0.710	0.69
	ANNS	0.720	0.700	0.740	0.715	0.700	0.68
	ExS	0.705	0.690	0.730	0.710	0.690	0.67
	MDR	0.690	0.675	0.720	0.700	0.685	0.67
	ws	0.675	0.660	0.710	0.690	0.675	0.66
	TCS	0.670	0.655	0.705	0.685	0.670	0.65
	AdH	0.655	0.640	0.695	0.675	0.660	0.64

Questions?

Thank you

Main Challenges:

- Traditional methods provide limited solutions
- Issues of fragmentation across systems.

Solution Concept:

- Semantic matching is used to uncover deeper relationships in data.

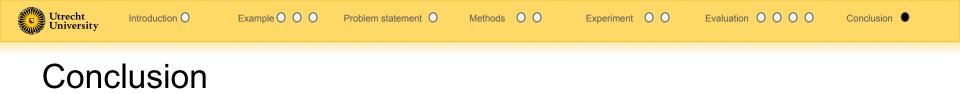
0

Why CTS?

- Let's take: "Olympics Beijing" as a keyword query example.
- Estimation: ExS will perform better
- Result: CTS gave more accurate results with exceptional retrieval time.
- How? While ExS returned broader Olympic-related tables (e.g., sports data), CTS retrieved tables with more detailed information on Olympic locations, years, and regions, aligning better with the query's intent. CTS achieves this by clustering semantically similar tables and focusing the search on the most relevant clusters, avoiding ExS's dilution of relevance and ANNS's approximation errors.

State-of-the-art

Table Contextual Search (TCS):


Shuo Zhang and Krisztian Balog. 2018. Adhoc table retrieval using semantic similarity. In Proceedings of the 2018 world wide web conference. 1553–1562

Ad-Hoc Table Retrieval (AdH):

Zhiyu Chen, Mohamed Trabelsi, Jeff Heflin, Yinan Xu, and Brian D Davison. 2020. Table search using a deep contextualized language model. In Proceedings of the 43rd international ACM SIGIR conference on research and development in information retrieval. 589–598.

WebTable System (WB)

Michael J Cafarella, Alon Halevy, and Nodira Khoussainova. 2009. Data integration for the relational web. Proceedings of the VLDB Endowment 2, 1 (2009), 1090–1101.

Dataset discovery is crucial in the era of big data, where finding the right dataset quickly and accurately makes all the difference. Our proposed methods achieve high performance, offering scalability without sacrificing accuracy. We believe that a good search model is one that not only delivers precise results but also meets user satisfaction by providing relevant and efficient discovery. This focus on both performance and user experience drives our approach and distinguishes our methods in the landscape of dataset discovery."