

Towards Efficient Data Wrangling with LLMs using Code Generation

Effy Xue Li, Till Döhmen University of Amsterdam, MotherDuck DBDBD'24

Date 11/2024

A data scientist is working on a table with 1 million rows, and she is facing following tasks...

Prompt used: A duck plumber who looks bored

A data scientist is working on a table with 1 million rows, and she is facing following tasks...

Prompt used: A duck plumber who looks bored

Data Imputation

A data scientist is working on a table with 1 million rows, and she is facing following tasks...

Prompt used: A duck plumber who looks bored

Data Imputation Error Detection

A data scientist is working on a table with 1 million rows, and she is facing following tasks...

Data Imputation Error Detection Data Transformation

Prompt used: A duck plumber who looks bored

A data scientist is working on a table with 1 million rows, and she is facing following tasks...

Prompt used: A duck plumber who looks bored

Data Imputation Error Detection Data Transformation

Entity Matching

A data scientist is working on a table with 1 million rows, and she is facing following tasks...

Prompt used: A duck plumber who looks bored

Programing by Example (PBE)

FlashFill++: Scaling Programming by Example by Cutting to the Chase

JOSÉ CAMBRONERO*, Microsoft, USA SUMIT GULWANI*, Microsoft, USA VU LE*, Microsoft, USA DANIEL PERELMAN*, Microsoft, USA ARJUN RADHAKRISHNA*, Microsoft, USA CLINT SIMON*, Microsoft, USA

Transform-Data-by-Example (TDE): An Extensible Search Engine for Data Transformations

Yeye He¹, Xu Chu²^{*}, Kris Ganjam¹, Yudian Zheng^{3[†]}, Vivek Narasayya¹, Surajit Chaudhuri¹

¹Microsoft Research, Redmond, USA ²Georgia Institute of Technology, Atlanta, USA ³Twitter Inc., San Francisco, USA ¹{yeyehe, krisgan, viveknar, surajitc}@microsoft.com ²xu.chu@cc.gatech.edu ³yudianz@twitter.com

- Domain-specific Language search space
- Search
- Rank
- Solution

- Have to define a program search space (often DSL).
- •
- •

- Have to define a program search space (often DSL).
- Solves only a limited number of tasks.
- •
- •

- Have to define a program search space (often DSL).
- Solves only a limited number of tasks.
- Struggling at semantically challenging tasks.
- •
- ullet

- Have to define a program search space (often DSL).
- Solves only a limited number of tasks.
- Struggling at semantically challenging tasks.
- Do not take natural language instructions as inputs.

ullet

- Have to define a program search space (often DSL).
- Solves only a limited number of tasks.
- Struggling at semantically challenging tasks.
- Do not take natural language instructions as inputs.
- ...

Input table

It performs LLM on a **per-row** basis (LLMPR).

Costly LLMs are Great for Data Wrangling

If we have a 1-million-rows-table, processing through it once will cost *...

	Time(with 100 concurrent calls)	Price
GPT-3.5	1.01 Hours	\$ 12.5
GPT-4	2.72 Hours	\$ 600
GPT-40	-	\$ 125

* Assuming input average token size is 10, and output is 5.

<mark>Costly</mark> LLMs are Great for Data Wrangling

If we have a 1-million-rows-table, processing through it once will cost *...

	Time(with 100 concurrent calls)	Price
GPT-3.5	1.01 Hours	\$ 12.5
GPT-4	2.72 Hours	\$ 600
GPT-40	-	\$ 125

And many other issues ...

- Transparency
- Reproducibility
- Privacy
- ...

* Assuming input average token size is 10, and output is 5.

How can we make automated data wrangling faster

How can we make automated data wrangling faster, cheaper

How can we make automated data wrangling faster, cheaper, stronger

How can we make automated data wrangling faster, cheaper, stronger(more reliable and more generic)?

How can we make automated data wrangling faster, cheaper, stronger(more reliable and more generic)?

-> Can we combine PBE and LLMPR, using LLM to generate code for data wrangling?

	Celsius	Fahrenheit
1	7	44.6
2	1	33.8
n		

Labelled Data

Generate code that's called "transform(input_str)" given instruction and input-output examples. Reason first and then generate. Instruction: Convert celsius to fahrenheit. Examples: Input:7 Out: 44.6

Prompt Formulation

Prompt Formulation

Code validation

Import re def string_transformation(input): ...

1. Is_Executable?

2. Acc/F1 score > threshold on demonstration?

We evaluate on benchmarks of these tasks:

Data Imputation Error Detection Data Transformation

Entity Matching

Entity Matching, Data Imputation, Error Detection

Task	Dataset	LLMPR[9]	Code Generation (Ours)
EM	Fodors-Zagats	100	95.5
EM	Beer	100	75.0
EM	DBLP-ACM	96.6	19.7
EM	DBLP-GoogleScholar	83.8	69.7
EM	Amazon-Google	63.5	42.1
EM	iTunes-Amazon	98.2	70.0
EM	Walmart-Amazon	87.0	25.5
DI	Buy	98.5	84.6
DI	Restaurant	88.4	50
ED	Hospital	97.8	23.5
ED	Adult	99.1	100*

Dataset	PBE [4]	LLMPR [9]	Code Generation (Ours)
BingQL-semantics	32.0	54.0	91.6
BingQL-Unit	96.0	N/A	95.0
Stack-overflow	63.0	65.3	87.4
FF-GR-Trifacta	91.0	N/A	83.7
Head cases	82.0	N/A	74.6
Average	72.8	N/A	86.46

Entity Matching, Data Imputation, Error Detection

Data Transformation

Task	Dataset	LLMPR[9]	Code Generation (Ours)
EM	Fodors-Zagats	100	95.5
EM	Beer	100	75.0
EM	DBLP-ACM	96.6	19.7
EM	DBLP-GoogleScholar	83.8	69.7
EM	Amazon-Google	63.5	42.1
EM	iTunes-Amazon	98.2	70.0
EM	Walmart-Amazon	87.0	25.5
DI	Buy	98.5	84.6
DI	Restaurant	88.4	50
ED	Hospital	97.8	23.5
ED	Adult	99.1	100*

Dataset	PBE [4]	LLMPR [9]	Code Generation (Ours)
BingQL-semantics	32.0	54.0	91.6
BingQL-Unit	96.0	N/A	95.0
Stack-overflow	63.0	65.3	87.4
FF-GR-Trifacta	91.0	N/A	83.7
Head cases	82.0	N/A	74.6
Average	72.8	N/A	86.46

• Evaluate based on rows.

Entity Matching, Data Imputation, Error Detection

Task	Dataset	LLMPR[9]	Code Generation (Ours)
EM	Fodors-Zagats	100	95.5
EM	Beer	100	75.0
EM	DBLP-ACM	96.6	19.7
EM	DBLP-GoogleScholar	83.8	69.7
EM	Amazon-Google	63.5	42.1
EM	iTunes-Amazon	98.2	70.0
EM	Walmart-Amazon	87.0	25.5
DI	Buy	98.5	84.6
DI	Restaurant	88.4	50
ED	Hospital	97.8	23.5
ED	Adult	99.1	100*

Dataset	PBE [4]	LLMPR [9]	Code Generation (Ours)
BingQL-semantics	32.0	54.0	91.6
BingQL-Unit	96.0	N/A	95.0
Stack-overflow	63.0	65.3	87.4
FF-GR-Trifacta	91.0	N/A	83.7
Head cases	82.0	N/A	74.6
Average	72.8	N/A	86.46

- Evaluate based on rows.
- A single generated program can only solve a part of the dataset.

Entity Matching, Data Imputation, Error Detection

Task	Dataset	LLMPR[9]	Code Generation (Ours)
EM	Fodors-Zagats	100	95.5
EM	Beer	100	75.0
EM	DBLP-ACM	96.6	19.7
EM	DBLP-GoogleScholar	83.8	69.7
EM	Amazon-Google	63.5	42.1
EM	iTunes-Amazon	98.2	70.0
EM	Walmart-Amazon	87.0	25.5
DI	Buy	98.5	84.6
DI	Restaurant	88.4	50
ED	Hospital	97.8	23.5
ED	Adult	99.1	100*

Dataset	PBE [4]	LLMPR [9]	Code Generation (Ours)
BingQL-semantics	32.0	54.0	91.6
BingQL-Unit	96.0	N/A	95.0
Stack-overflow	63.0	65.3	87.4
FF-GR-Trifacta	91.0	N/A	83.7
Head cases	82.0	N/A	74.6
Average	72.8	N/A	86.46

- Evaluate based on rows.
- A single generated program can only solve a part of the dataset.

Entity Matching, Data Imputation, Error Detection

Task	Dataset	LLMPR[9]	Code Generation (Ours)
EM	Fodors-Zagats	100	95.5
EM	Beer	100	75.0
EM	DBLP-ACM	96.6	76.9
EM	DBLP-GoogleScholar	83.8	69.7
EM	Amazon-Google	63.5	42.1
EM	iTunes-Amazon	98.2	70.0
EM	Walmart-Amazon	87.0	25.5
DI	Buy	98.5	84.6
DI	Restaurant	88.4	50
ED	Hospital	97.8	23.5
ED	Adult	99.1	100*

Dataset	PBE [4]	LLMPR [9]	Code Generation (Ours)
BingQL-semantics	32.0	54.0	91.6
BingQL-Unit	96.0	N/A	95.0
Stack-overflow	63.0	65.3	87.4
FF-GR-Trifacta	91.0	N/A	83.7
Head cases	82.0	N/A	74.6
Average	72.8	N/A	86.46

- Evaluate based on rows.
- A single generated program can only solve a part of the dataset.

Average

Entity Matching, Data Imputation, Error Detection

Task	Dataset	LLMPR[9]	Code Generation (Ours)
EM	Fodors-Zagats	100	95.5
EM	Beer	100	75.0
EM	DBLP-ACM	96.6	19.7 76.9
EM	DBLP-GoogleScholar	83.8	69.7
EM	Amazon-Google	63.5	42.1
EM	iTunes-Amazon	98.2	70.0
EM	Walmart-Amazon	87.0	25.5
DI	Buy	98.5	84.6
DI	Restaurant	88.4	50
ED	Hospital	97.8	23.5
ED	Adult	99.1	100*

Dataset PBE^[4] LLMPR [9] Code Generation (Ours) **BingQL-semantics** 32.0 54.0 91.6 **BingQL-Unit** 96.0 N/A 95.0 Stack-overflow 63.0 65.3 87.4 FF-GR-Trifacta N/A 83.7 91.0 Head cases 82.0 N/A 74.6

N/A

86.46

• Evaluate based on tasks.

72.8

- Evaluate based on rows.
- A single generated program can only solve a part of the dataset.

Entity Matching, Data Imputation, Error Detection

Task	Dataset	LLMPR[9]	Code Generation (Ours)
EM	Fodors-Zagats	100	95.5
EM	Beer	100	75.0
EM	DBLP-ACM	96.6	19.7 76.9
EM	DBLP-GoogleScholar	83.8	69.7
EM	Amazon-Google	63.5	42.1
EM	iTunes-Amazon	98.2	70.0
EM	Walmart-Amazon	87.0	25.5
DI	Buy	98.5	84.6
DI	Restaurant	88.4	50
ED	Hospital	97.8	23.5
ED	Adult	99.1	100*

- Evaluate based on rows.
- A single generated program can only solve a part of the dataset.

Dataset	PBE [4]	LLMPR [9]	Code Generation (Ours)
BingQL-semantics	32.0	54.0	91.6
BingQL-Unit	96.0	N/A	95.0
Stack-overflow	63.0	65.3	87.4
FF-GR-Trifacta	91.0	N/A	83.7
Head cases	82.0	N/A	74.6
Average	72.8	N/A	86.46

- Evaluate based on tasks.
- Improved performance compare to the previous SOTA.

Entity Matching, Data Imputation, Error Detection

Task	Dataset	LLMPR[9]	Code Generation (Ours)
EM	Fodors-Zagats	100	95.5
EM	Beer	100	75.0
EM	DBLP-ACM	96.6	19.7 76.9
EM	DBLP-GoogleScholar	83.8	69.7
EM	Amazon-Google	63.5	42.1
EM	iTunes-Amazon	98.2	70.0
EM	Walmart-Amazon	87.0	25.5
DI	Buy	98.5	84.6
DI	Restaurant	88.4	50
ED	Hospital	97.8	23.5
ED	Adult	99.1	100*

- Evaluate based on rows.
- A single generated program can only solve a part of the dataset.

Dataset	PBE [4]	LLMPR [9]	Code Generation (Ours)
BingQL-semantics	32.0	54.0	91.6 37.6
BingQL-Unit	96.0	N/A	95.0
Stack-overflow	63.0	65.3	87.4
FF-GR-Trifacta	91.0	N/A	83.7
Head cases	82.0	N/A	74.6
Average	72.8	N/A	86.46

- Evaluate based on tasks.
- Improved performance compare to the previous SOTA.

Entity Matching, Data Imputation, Error Detection

Task	Dataset	LLMPR[9]	Code Generation (Ours)	Dataset	PBE [4]	LLMPR [9]	Code Generation (Ours)
EM EM EM EM EM EM EM	Fodors-Zagats Beer APJ-Calls: DBLP-GoogleScholar Amazon-Google iTunes-Amazon Walmart-Amazon	100 100 96.6 83.8 63.5 98.2 87.0	95.5 75.0 19.7 69.7 42.1 70.0 25.5 76.9 ↓	BingQL-semantics BingQL-Unit Stack-overflow FF-GR-Trifacta Head cases	32.0 96.0 63.0 91.0 82.0 72.8 72.8 72.8 72.8	54.0 N/A 65.3 N/A N/A N/A N/A	91.6 95.0 87.4 83.7 74.6 86.46
DI DI ED ED	Buy Restaurant Hospital Adult	98.5 88.4 97.8 99.1	84.6 50 23.5 100*	 Evalua Improvision to the line 	te bas ved per	ed on tas rformance us SOTA	ks. e compare

- Evaluate based on rows.
- A single generated program can only solve a part of the dataset.

Entity Matching, Data Imputation, Error Detection

Task	Dataset	LLMPR[9]	Code Generation (Ours)	Dataset	PBE [4]	LLMPR [9]	Code Generation (Ours)
EM EM EM EM EM EM EM	Fodors-Zagats Beer APP-Calls: DBLP-GoogleScholar Amazon-Google iTunes-Amazon Walmart-Amazon	100 100 96.6 83.8 63.5 88 70	95.5 75.0 19.7 69.7 42.1 70.0 21.5 ►>	BingQL-semantics BingQL-Unit Stack-overflow FF-GR-Trifacta Head cases	32.0 96.0 63.0 91.0 82.0	54.0 N/A 65.3 N/A N/A	91.6 95.0 87.4 83.7 74.6 86.46
DI DI ED ED	Buy Restaurant Hospital Adult	98.5 88.4 97.8 99.1	84.6 50 23.5 100*	 Evalua Improvision to the line 	te bas ved per	ed on tag	sks. e compare

- Evaluate based on rows.
- A single generated program can only solve a part of the dataset.

Entity Matching, Data Imputation, Error Detection

Data Transformation

Task	Dataset	LLMPR[9]	Code Generation (Ours)	Dataset	PBE [4]	LLMPR [9]	Code Generation (Ours)
EM EM EM EM EM EM EM	Fodors-Zagats Beer APD-Calls: DBLP-GoogleScholar Amazon-Google iTunes-Amazon Walmart-Amazon	100 100 96.6 83.8 63.5	95.5 75.0 19.7 69.7 42.1 70.0 21.5 → O	BingQL-semantics BingQL-Unit Stack-overflow FF-GR-Trifacta Head cases	32.0 96.0 63.0 91.0 82.0	54.0 N/A 65.3 N/A N/A	91.6 95.0 87.4 83.7 74.6 86.46
DI DI ED ED	Buy Restaurant Hospital Adult	98.5 88.4 97.8 99.1	84.6 50 23.5 100*	 Evalua Improvision to the statement 	te bas red per	ed on tas rformanc us SOTA	sks. e compare

• Evaluate based on But what's the catch?

• A single generated program can only solve a part of the dataset.

We evaluate on benchmarks of these tasks:

Drop: 26.2 Drop: 36.7

Drop: 33.1

Data Imputation Error Detection Data Transformation

Entity Matching

We evaluate on benchmarks of these tasks:

 Drop: 26.2
 Drop: 36.7
 Gain: 13.66
 Drop: 33.1

Data Imputation Error Detection Data Transformation

Entity Matching

Code Generation Framework with DuckDB SQL Macros

	Bing-QL-semantics	Bing-QL-unit
GPT-4 (DuckDB-SQL)	65.3	96.0
GPT-4o (DuckDB-SQL)	67.3	96.0
GPT-4 (Python)	91.6	95.0

- Python is good at semantics-related tasks, highly due to existing packages.
- Generating SQL macros can solve a good amount of unit-conversion tasks.

import re

def string_transformation(input_string):
 # Extract the numeric value from the input string
 celsius = float(re.search(r'\d+', input_string).group())
 # Convert Celsius to Fahrenheit
 fahrenheit = (celsius * 9/5) + 32
 # Format the result into the desired output string
 return f'{fahrenheit} Fahrenheit'

mp	ort re
ef	<pre>string_transformation(input_string):</pre>
	# Extract the numeric value from the input string
	<pre>celsius = float(re.search(r'\d+', input_string).group())</pre>
	# Convert Celsius to Fahrenheit
	fahrenheit = (celsius * 9/5) + 32
	<pre># Format the result into the desired output string return f'{fahrenheit} Fahrenheit'</pre>

	Celsius	Fahrenheit
1	7	44.6
2	1	33.8
Х		
n	-17.2222	1

imp	ort re
def	<pre>string_transformation(input_string):</pre>
	# Extract the numeric value from the input string
	<pre>celsius = float(re.search(r'\d+', input_string).group())</pre>
	# Convert Celsius to Fahrenheit
	fahrenheit = (celsius * 9/5) + 32
	# Format the result into the desired output string

return f'{fahrenheit} Fahrenheit'

-17.2222 1

n

Once generated code solution can solve one part of the

problem. How are we gonna deal with the rest of the data?

We can recursively generate code solutions for the rest of the data.

In reality, we don't have labels for the data.

We need a data router.

Task Instruction

We need a task router.

Generate input validation code (e.g. using regex) based on validated solutions.

API calls bounds

N: Number of rows

- T: Number of trials = 3
- R: Number of retry = 5
- c : Constants for initial api calls

Baseline: APICalls(LLMPR) = N

Proposed method: Worst case upper bound: N + c Best case upper bound: T * R = 15

Unpublished Results

N: Number of rows

- T: Number of trials = 3
- R: Number of retry = 5
- c : Constants for initial api calls

Baseline: APICalls(LLMPR) = N

Proposed method: Worst case upper bound: N + c Best case upper bound: T * R = 15

Thank you!

Next steps

Potential human-in-the-loop interface.

PRAGMA transform('my_table', 'my_column', 'convert celsius to fahrenheit');

Potential transform pragma function.

Cr: @Hamilton