
Compiling Actors to Stateful Streaming Programs

Marcus Schutte 1, George Christodoulou 1, and Asterios Katsifodimos 1

1 Delft University of Technology, The Netherlands
{m.schutte,c.christodoulou,a.katsifodimos}@tudelft.nl

Transitioning to the cloud has numerous benefits including infinite scalability and reduced
costs with a pay-as-you-go pricing model. Containerization and building microservices is a
widespread approach toward creating scalable cloud applications. Reasoning about correct-
ness across the boundary of microservices is extremely hard [3]. As an alternative, serverless
computing - such as Function-as-a-Service (FaaS) - is gaining traction. Nonetheless, FaaS
is missing execution guarantees such as durable execution progress, exactly once executing
and synchronization [1]. In both cases, the burden of correctness falls on the programmer’s
shoulders resulting in business logic being cluttered with error-handling code.

Datastream systems are a suitable execution engine for serverless applications since they
provide efficient message passing, state management, and exactly-once processing guaran-
tees. However, programming streaming systems is hard. One needs extensive knowledge
of functional programming and dataflow libraries or streaming query languages. Moreover,
programming a streaming system is tailored toward big data analytics and not specifically
toward serverless applications.

Our goal is to raise the abstraction of distributed systems programming and handle the
complexity of scalability and correctness. We propose a compiler pipeline that lets program-
mers write stateful entities. The compiler turns entities into stateful dataflow programs.
Stateful entities are long-lived objects containing a state, similar to the actor programming
model [2]. Each entity is responsible for its state and can only interact with another entity
by message passing. Our compiler executes a dataflow analysis of the programs and pro-
duces stateful dataflow graphs. The compiler extracts all calls to other stateful entities and
automatically turns them into asynchronous remote function calls. Because of the dataflow
analyses remote function calls are joined at the right place and continue with the appropriate
context. This allows a method to make multiple remote function calls asynchronously. By
using a streaming system as an execution engine. the program runs in a distributed environ-
ment with strong consistency guarantees and programmers do not need to concern themselves
with correctness.

References

[1] Burckhardt et al. Durable functions: Semantics for stateful serverless. Prod. ACM on
Programming Languages, 5(OOPSLA):1–27, 2021.

[2] Bykov et al. Orleans: cloud computing for everyone. In Prod. ACM Symposium on Cloud
Computing, pages 1–14, 2011.

[3] Ghemawat et al. Towards modern development of cloud applications. In Proceedings of
the 19th Workshop on Hot Topics in Operating Systems, pages 110–117, 2023.


