Engineering the Yannakakis Algorithm in Column Stores

Liese Bekkers

Data Science Institute, UHasselt, Belgium liese.bekkers@uhasselt.be

Traditional binary join plans are not robust: a poorly chosen join order may compute needlessly large intermediate results, causing substantial performance degradation. Recent work by Birler, Kemper and Neumann (BKN) [1] addresses this issue by decomposing the hash join operator into two suboperators, called Lookup and Expand (L&E). By flexibly reordering these suboperations large intermediate subresults can be avoided, significantly improving query efficiency. While BKN successfully implement L&E plans inside Umbra, a compiled query engine, it is unclear, however, how to effectively implement L&E plans inside of interpreted query engines. In our ongoing work, we extend this approach to interpreted engines, with a particular focus on column stores and the processing of acyclic queries.

In this talk, we present a novel method for integrating Lookup and Expand plans in interpreted environments. We give a formal semantics to L&E plans based on the nested relational model which is an extension of the relational model where individual records may themselves contain entire relations. In particular, we design a set of nested relational operators that we call the Nested Semijoin Algebra (NSA). Here, lookup can be expressed as a form of nesting while expand is a form of unnesting. Moreover, our formalisation goes beyond lookup/expand and joins, and generalizes to all other standard relational operators. We characterize the subset of NSA plans that can be processed instance-optimally, i.e., in time asymptotically linear in input and output, and call this subset 2-phase. Two-phase NSA plans express an enumeration-based version of Yannakakis' algorithm. We also compare traditional binary join plans with NSA-based 2-phase plans in terms of a detailed cost model rather than asymptotic complexity, illustrating that when binary plans for acyclic queries can be transformed into 2-phase NSA plans by reordering unnest operations, the NSA plans cost less on all inputs. In cases where transformation is not possible, we identify conditions under which the 2-phase NSA plan is at most as costly while still being provably instance-optimal.

On established benchmarks, we show that converting existing binary join plans for acyclic queries into 2-phase NSA-based plans consistently matches or outperforms the binary plans, often achieving significant speedups while being provably instance-optimal. We hope this approach offers a fresh perspective on Yannakakis' algorithm, helping system engineers better understand its practical benefits and facilitating its adoption into a broader spectrum of query engines.

This is ongoing, unpublished research, jointly done with Frank Neven (UHasselt), Stijn Vansummeren (UHasselt), and Yisu Remy Wang (UCLA).

References

 A. Birler, A. Kemper, and T. Neumann. Robust join processing with diamond hardened joins. Proc. VLDB Endow., 17(11):3215–3228, aug 2024.